Giáo dục

Bài 39 trang 123 SGK Toán 9 tập 1

Đề bài

Cho hai đường tròn ((O)) và ((O')) tiếp xúc ngoài tại (A). Kẻ tiếp tuyến chung ngoài (BC), (Bin (O),Cin (O').) Tiếp tuyến chung trong tại (A) cắt tiếp tuyến chung ngoài (BC) ở (I).

a) Chứng minh rằng (widehat{BAC}=90^{circ}).

b) Tính số đo góc (OIO').

c) Tính độ dài (BC), biết (OA=9cm, O'A=4cm.)

Lời giải chi tiết

a)

Xét đường tròn ((O)) có (IB, IA) là hai tiếp tuyến lần lượt tại (B, A)

(Rightarrow IB=IA) (1); (IO) là tia phân giác của góc (BIA Rightarrow widehat{I_1}=widehat{I_2}) (2)

Xét đường tròn ((O')) có (IC, IA) là hai tiếp tuyến lần lượt tại (C, A)

(Rightarrow IC=IA) (3); (IO') là tia phân giác của góc (CIA Rightarrow widehat{I_3}=widehat{I_4}) (4)

Từ (1) và (3) (Rightarrow IB=IC=IA=dfrac{1}{2}BC)

(Rightarrow Delta{ABC}) vuông tại (A) (tam giác có đường trung tuyến AI ứng với một cạnh bằng nửa cạnh đó thì tam giác đó là tam giác vuông)

(Rightarrow widehat{BAC}=90^{circ}).

b) Cách 1:

Ta có: (widehat{I_1}+widehat{I_2}+widehat{I_3}+widehat{I_4}=180^o) (5)

Từ (2), (3), (5) (Leftrightarrow widehat{I_2}+widehat{I_2}+widehat{I_3}+widehat{I_3}=180^o)

(Leftrightarrow 2widehat{I_2}+2widehat{I_3}=180^o)

(Leftrightarrow 2(widehat{I_2}+widehat{I_3})=180^o)

(Leftrightarrow widehat{I_2}+widehat{I_3}=90^o)

(Leftrightarrow widehat{OIO'}=90^o)

Cách 2:

Vì góc (BIA) và góc (AIC) là hai góc kề bù

Suy ra (widehat{OIO'}=90^{circ}) (hai tia phân giác của hai góc kề bù thì vuông góc với nhau).

c) Vì (IA) là tiếp tuyến chung của hai đường tròn nên (IA bot OO').

Xét tam giác (OIO') vuông tại (I) có (IA) là đường cao, áp dụng hệ thức giữa đường cao và hình chiếu trong tam giác vuông, ta có:

(AI^2=AO.AO' Rightarrow AI^2=9.4=36)

(Rightarrow AI= sqrt{36}=6 cm)

Từ câu a, ta có (AI=dfrac{BC}{2} Rightarrow BC=2.AI=2.6=12cm)

Nhận xét. Câu a), b) chỉ là gợi ý để làm câu c). Đối với những bài toán có hai đường tròn tiếp xúc, ta thường vẽ thêm tiếp tuyến chung tại tiếp điểm để xuất hiện yếu tố trung gian giúp cho việc tính toán hoặc chứng minh được thuận lợi.